γ-tocotrienol attenuates TNF-α-induced changes in secretion and gene expression of MCP-1, IL-6 and adiponectin in 3T3-L1 adipocytes
نویسندگان
چکیده
Tocotrienols, members of the vitamin E family, have been shown to possess anti-inflammatory properties and display activity against a variety of chronic diseases, such as cancer, cardiovascular and neurological diseases. However, whether tocotrienols contribute to the prevention of inflammatory responses in adipose tissue remains to be elucidated. In this study, we examined the effects of γ-tocotrienol, the most common tocotrienol isomer, on tumor necrosis factor-α (TNF-α)-induced inflammatory responses by measuring the expression of the adipokines, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and adiponectin in 3T3-L1 adipocytes. Exposure to TNF-α (10 ng/ml) for 24 h increased MCP-1 and IL-6 secretion, and decreased adiponectin secretion and peroxisome proliferator-activated receptor-γ (PPARγ) mRNA expression. γ-tocotrienol effectively improved the TNF-α-induced adverse changes in MCP-1, IL-6 and adiponectin secretion, and in MCP-1, IL-6, adiponectin and PPARγ mRNA expression. Furthermore, TNF-α-mediated IκB-α phosphorylation and nuclear factor-κB (NF-κB) activation were significantly suppressed by the γ-tocotrienol treatment. Our results suggest that γ-tocotrienol may improve obesity-related functional abnormalities in adipocytes by attenuating NF-κB activation and the expression of inflammatory adipokines.
منابع مشابه
Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes
Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3...
متن کاملPentamethylquercetin improves adiponectin expression in differentiated 3T3-L1 cells via a mechanism that implicates PPARγ together with TNF-α and IL-6.
Adiponectin is an adipocyte-derived hormone that plays a pivotal role in the regulation of lipid and glucose metabolism. Up-regulation of adiponectin expression and production has been shown to benefit for metabolic disorders, including type 2 diabetes, hyperlipidemia, etc. The present study investigated whether the novel polymethoxylated flavonoid pentamethylquercetin (PMQ), a member of polyme...
متن کاملAICAR Attenuates TNFα-Induced Inappropriate Secretion of Monocyte Chemoattractant Protein-1 and Adiponectin in 3T3-L1 Adipocytes
AIM The increase in monocyte chemoattractant protein-1 (MCP-1) and the decrease in adiponectin production from hypertrophic adipocytes are associated with adipose tissue inflammation and its metabolic complications. The aim of this study was to determine whether 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an adenosine monophosphate-activated protein kinase (AMPK) activator, mod...
متن کاملPaprika Pigments Attenuate Obesity-Induced Inflammation in 3T3-L1 Adipocytes
Obesity is related to various diseases, such as diabetes, hyperlipidemia, and hypertension. Adipocytokine, which is released from adipocyte cells, affects insulin resistance and blood lipid level disorders. Further, adipocytokine is related to chronic inflammation in obesity condition adipocyte cells. Paprika pigments (PPs) contain large amounts of capsanthin and capsorubin. These carotenoids a...
متن کاملJNK- and IkappaB-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro.
Obese conditions increase the expression of adipocytokine monocyte chemoattractant protein-1 (MCP-1) in adipose tissue as well as MCP-1 plasma levels. To investigate the mechanism behind increased MCP-1, we used a model in which 3T3-L1 adipocytes were artificially hypertrophied by preloading with palmitate in vitro. As observed in obesity, under our model conditions, palmitate-preloaded cells s...
متن کامل